Published in

BMJ Publishing Group, BMJ Open Sport and Exercise Medicine, 1(6), p. e000696, 2020

DOI: 10.1136/bmjsem-2019-000696

Links

Tools

Export citation

Search in Google Scholar

Impact of the distance from the chest wall to the heart on surface ECG voltage in athletes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ObjectiveAvailable ECG criteria for detection of left ventricular (LV) hypertrophy have been reported to have limited diagnostic capability. Our goal was to describe how the distance between the chest wall and the left ventricle determined by echocardiography affected the relationship between ECG voltage and LV mass (LVM) in athletes.MethodsWe retrospectively evaluated digitised ECG data from college athletes undergoing routine echocardiography as part of their preparticipation evaluation. Along with LV mass and volume, we determined the chest wall–LV distance in the parasternal short-axis and long-axis views from two-dimensional transthoracic echocardiographic images and explored the relation with ECG QRS voltages in all leads, as well as summed voltages as included in six major ECG-LVH criteria.Results239 athletes (43 women) were included (age 19±1 years). In men, greater LV–chest wall distance was associated with higher R-wave amplitudes in leads aVL and I (R=0.20 and R=0.25, both p<0.01), while in women greater distance was associated with higher R-amplitudes in V5 and V6 (R=0.42 and R=0.34, both p<0.01). In women, the chest wall–LV distance was the only variable independently (and positively) associated with R V5 voltage, while LVM, height and weight contributed to the relationship in men.ConclusionsThe chest wall–LV distance was weakly associated with ECG voltage in athletes. Inconsistent associations in men and women imply different intrathoracic factors affecting impedance and conductance between sexes. This may help explain the poor relationship between QRS voltage and LVM in athletes.