Published in

American Institute of Physics, The Journal of Chemical Physics, 7(152), p. 074715, 2020

DOI: 10.1063/1.5136075

Links

Tools

Export citation

Search in Google Scholar

Photoexcited organic molecules en route to highly efficient autoionization

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The conversion of optical and electrical energies in novel materials is key to modern optoelectronic and light-harvesting applications. Here, we investigate the equilibration dynamics of photoexcited 2,7-bis(biphenyl-4-yl)-2′,7′-ditertbutyl-9,9′-spirobifluorene (SP6) molecules adsorbed on ZnO(10-10) using femtosecond time-resolved two-photon photoelectron and optical spectroscopies. We find that, after initial ultrafast relaxation on femtosecond and picosecond time scales, an optically dark state is populated, likely the SP6 triplet (T) state, that undergoes Dexter-type energy transfer ( rDex = 1.3 nm) and exhibits a long decay time of 0.1 s. Because of this long lifetime, a photostationary state with average T–T distances below 2 nm is established at excitation densities in the 1020 cm−2 s−1 range. This large density enables decay by T–T annihilation (TTA) mediating autoionization despite an extremely low TTA rate of kTTA = 4.5 ⋅ 10−26 m3 s−1. The large external quantum efficiency of the autoionization process (up to 15%) and photocurrent densities in the mA cm−2 range offer great potential for light-harvesting applications.