Dissemin is shutting down on January 1st, 2025

Published in

Association for Computing Machinery (ACM), ACM Transactions on Mathematical Software, 1(38), p. 1-20, 2011

DOI: 10.1145/2049662.2049665

Links

Tools

Export citation

Search in Google Scholar

Computing the volume of a union of balls

Journal article published in 2011 by Frederic Cazals ORCID, Harshad Kanhere, Sébastien Loriot
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Balls and spheres are amongst the simplest 3D modeling primitives, and computing the volume of a union of balls is an elementary problem. Although a number of strategies addressing this problem have been investigated in several communities, we are not aware of any robust algorithm, and present the first such algorithm. Our calculation relies on the decomposition of the volume of the union into convex regions, namely the restrictions of the balls to their regions in the power diagram. Theoretically, we establish a formula for the volume of a restriction, based on Gauss' divergence theorem. The proof being constructive, we develop the associated algorithm. On the implementation side, we carefully analyse the predicates and constructions involved in the volume calculation, and present a certified implementation relying on interval arithmetic. The result is certified in the sense that the exact volume belongs to the interval computed using the interval arithmetic. Experimental results are presented on hand-crafted models presenting various difficulties, as well as on the 58,898 models found in the 2009-07-10 release of the Protein Data Bank.