Published in

Genetics Society of America, G3, 10(9), p. 3101-3104, 2019

DOI: 10.1534/g3.119.400335

Links

Tools

Export citation

Search in Google Scholar

micRocounter: Microsatellite Characterization in Genome Assemblies

Journal article published in 2019 by Johnathan Lo ORCID, Michelle M. Jonika ORCID, Heath Blackmon ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract Microsatellites are repetitive DNA sequences usually found in non-coding regions of the genome. Their quantification and analysis have applications in fields from population genetics to evolutionary biology. As genome assemblies become commonplace, the need for software that can facilitate analyses has never been greater. In particular, R packages that can analyze genomic data are particularly important since this is one of the most popular software environments for biologists. We created an R package, micRocounter, to quantify microsatellites. We have optimized our package for speed, accessibility, and portability, making the automated analysis of large genomic data sets feasible. Computationally intensive algorithms were built in C++ to increase speed. Tests using benchmark datasets show a 200-fold improvement in speed over existing software. A moderately sized genome of 500 Mb can be processed in under 50 sec. Results are output as an object in R increasing accessibility and flexibility for practitioners.