Published in

MDPI, Biomolecules, 3(10), p. 394, 2020

DOI: 10.3390/biom10030394

Links

Tools

Export citation

Search in Google Scholar

Head-to-Head Comparison of the Incremental Predictive Value of The Three Established Risk Markers, Hs-troponin I, C-Reactive Protein, and NT-proBNP, in Coronary Artery Disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Risk stratification among patients with coronary artery disease (CAD) is of considerable interest to potentially guide secondary preventive therapies. Cardiac troponins as well as C-reactive protein (hsCRP) and natriuretic peptides have emerged as biomarkers for risk stratification. The question remains if one of these biomarkers is superior in predicting adverse outcomes. Thus, we perform a head-to-head comparison between high-sensitivity troponin I (hsTnI), hsCRP, and N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with CAD. Plasma levels were measured in a cohort of 2193 patients with documented CAD. The main outcome measures were cardiovascular (CV) death and/or nonfatal myocardial infarction (MI). During a median follow-up of 3.8 years, all three biomarkers were associated with cardiovascular death and/or MI. After adjustments for conventional cardiovascular risk factors, the hazard ratio (HR) per standard deviation (SD) for the prediction of CV death and/or nonfatal MI was 1.39 [95% CI: 1.24–1.57, p < 0.001] for hsTnI, 1.41 [95% CI: 1.24–1.60, p < 0.001] for hsCRP, and 1.64 [95% CI: 1.39–1.92, p < 0.001] for NT-proBNP. However, upon further adjustments for the other two biomarkers, only NT-proBNP was still associated with the combined endpoint with an HR of 1.47 [95% CI: 1.19–1.82, p < 0.001]. Conclusively, NT-proBNP is reliably linked to CV death and MI in patients with CAD and provides incremental value beyond hsCRP and hsTnI.