Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 9(117), p. 4701-4709, 2020

DOI: 10.1073/pnas.1911349117

Links

Tools

Export citation

Search in Google Scholar

On the evolution of protein–adenine binding

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance How proteins evolved to recognize and bind their ligands is a key mystery in protein function evolution. To explore this mystery, we study how proteins bind adenine, an ancient fragment. We characterize physicochemical patterns of protein–adenine interactions and link these to proteins’ evolutionary origins. In conflict with previous findings, we see that all of adenine’s hydrogen donors and acceptors have been used to bind proteins, and that adenine binding is likely to have emerged multiple times in evolution. To identify adenine-binding sites of shared origin, we use “themes”: short amino acid segments suggested to constitute evolutionary building blocks. We detect specific themes that are engaged in adenine binding; the detection of these in a protein’s sequence might reveal its function.