American Association for Cancer Research, Clinical Cancer Research, 13(26), p. 3360-3370, 2020
DOI: 10.1158/1078-0432.ccr-19-3087
Full text: Download
Abstract Purpose: Broadly expressed, highly differentiated tumor-associated antigens (TAA) can elicit antitumor immunity. However, vaccines targeting TAAs have demonstrated disappointing clinical results, reflecting poor antigen selection and/or immunosuppressive mechanisms. Experimental Design: Here, a panel of widely expressed, novel colorectal TAAs were identified by performing RNA sequencing of highly purified colorectal tumor cells in comparison with patient-matched colonic epithelial cells; tumor cell purification was essential to reveal these genes. Candidate TAA protein expression was confirmed by IHC, and preexisting T-cell immunogenicity toward these antigens tested. Results: The most promising candidate for further development is DNAJB7 [DnaJ heat shock protein family (Hsp40) member B7], identified here as a novel cancer-testis antigen. It is expressed in many tumors and is strongly immunogenic in patients with cancers originating from a variety of sites. DNAJB7-specific T cells were capable of killing colorectal tumor lines in vitro, and the IFNγ+ response was markedly magnified by control of immunosuppression with cyclophosphamide in patients with cancer. Conclusions: This study highlights how prior methods that sequence whole tumor fractions (i.e., inclusive of alive/dead stromal cells) for antigen identification may have limitations. Through tumor cell purification and sequencing, novel candidate TAAs have been identified for future immunotherapeutic targeting.