Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-39774-2

Links

Tools

Export citation

Search in Google Scholar

Bipolaron Dynamics in Graphene Nanoribbons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractGraphene nanoribbons (GNRs) are two-dimensional structures with a rich variety of electronic properties that derive from their semiconducting band gaps. In these materials, charge transport can occur via a hopping process mediated by carriers formed by self-interacting states between the excess charge and local lattice deformations. Here, we use a two-dimensional tight-binding approach to reveal the formation of bipolarons in GNRs. Our results show that the formed bipolarons are dynamically stable even for high electric field strengths when it comes to GNRs. Remarkably, the bipolaron dynamics can occur in acoustic and optical regimes concerning its saturation velocity. The phase transition between these two regimes takes place for a critical field strength in which the bipolaron moves roughly with the speed of sound in the material.