Dissemin is shutting down on January 1st, 2025

Published in

American Association for Clinical Chemistry, Clinical Chemistry, 1(65), p. 74-79, 2019

DOI: 10.1373/clinchem.2018.286658

Links

Tools

Export citation

Search in Google Scholar

Germline Genetics of Prostate Cancer: Time to Incorporate Genetics into Early Detection Tools

Journal article published in 2019 by Richard J. Fantus ORCID, Brian T. Helfand
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract BACKGROUND Prostate cancer (PCa) remains the most common solid malignancy in men, and its prevalence makes understanding its heritability of paramount importance. To date, the most common factors used to estimate a man's risk of developing PCa are age, race, and family history. Despite recent advances in its utility in multiple malignancies (e.g., breast and colon cancer), genetic testing is still relatively underutilized in PCa. CONTENT Multiple highly penetrant genes (HPGs) and single-nucleotide polymorphisms (SNPs) have been show to increase a patient's risk of developing PCa. Mutations in the former, like DNA damage repair genes, can confer a 2- to 3-fold increased risk of developing PCa and can increase the risk of aggressive disease. Similarly, PCa-risk SNPs can be used to create risk scores (e.g., genetic or polygenic risk scores) that can be used to further stratify an individual's disease susceptibility. Specifically, these genetic risk scores can provide more specific estimates of a man's lifetime risk ranging up to >6-fold higher risk of PCa. SUMMARY It is becoming increasingly evident that in addition to the standard family history and race information, it is necessary to obtain genetic testing (including an assessment of HPG mutation status and genetic risk score) to provide a full risk assessment. The additional information derived thereby will improve current practices in PCa screening by risk-stratifying patients before initial prostate-specific antigen testing, determining a patient's frequency of visits, and even help identify potentially at-risk family members.