Published in

Hindawi, Mathematical Problems in Engineering, (2020), p. 1-18, 2020

DOI: 10.1155/2020/9478083

Links

Tools

Export citation

Search in Google Scholar

A QFD-Based Quality and Capability Design Method for Transboundary Services

Journal article published in 2020 by Chao Ma, Wei Dong Liu, Zhi Ying Tu, Zhong Jie Wang ORCID, Xiao Fei Xu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The “transboundary”, an emerging phenomenon in the Internet service ecosystem, is leading to the flourishing of innovative services. A transboundary service incorporates services, resources, and technologies from multiple domains into its business to create a particular competitive advantage and unique user experiences. It is difficult to comprehensively consider all the constraints from multiple domains to precisely design the nonfunctional characteristics of transboundary services, such as quality attributes and capability attributes. We propose a two-phase quality design method for transboundary services called value quality deployment-quality capability deployment (VQD-QCD) based on quality function deployment (QFD). Given the restrictions of transboundary services, VQD-QCD translates the value expectations of multiple stakeholders into an optimal configuration for global quality parameters (GQPs), local quality parameters, and capability parameters. Details of VQD are illustrated. Considering the inherent vagueness and uncertainty of relationships between value expectations and GQPs, and among GQPs, fuzzy least absolute regression and fuzzy nonlinear programming methods are incorporated into QFD to identify the quantitative relations between value indicators and GQPs, and among GQPs, and obtain an optimal configuration scheme for GQPs. Usability of the proposed method is validated through a case study on the “DiDi mobile transportation service”, which is a representative transboundary service in China. Compared with the current method, which is inaccurate and inefficient because its translation between value expectations and relevant quality and capability parameters is artificial and subjective, the proposed method integrates fuzzy least absolute regression and fuzzy nonlinear programming methods into QFD, which facilitate transboundary service designers to precisely and efficiently design the quality and capability characteristics of innovative services in the manner of semiautomatisation, which promotes the innovative design of transboundary services.