Published in

MDPI, Brain Sciences, 9(9), p. 221, 2019

DOI: 10.3390/brainsci9090221

Links

Tools

Export citation

Search in Google Scholar

Prediction of PD-L1 Expression in Neuroblastoma via Computational Modeling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Immunotherapy is a promising new therapeutic approach for neuroblastoma (NBM): an anti-GD2 vaccine combined with orally administered soluble beta-glucan is undergoing a phase II clinical trial and nivolumab and ipilimumab are being tested in recurrent and refractory tumors. Unfortunately, predictive biomarkers of response to immunotherapy are currently not available for NBM patients. The aim of this study was to create a computational network model simulating the different intracellular pathways involved in NBM, in order to predict how the tumor phenotype may be influenced to increase the sensitivity to anti-programmed cell death-ligand-1 (PD-L1)/programmed cell death-1 (PD-1) immunotherapy. The model runs on COPASI software. In order to determine the influence of intracellular signaling pathways on the expression of PD-L1 in NBM, we first developed an integrated network of protein kinase cascades. Michaelis–Menten kinetics were associated to each reaction in order to tailor the different enzymes kinetics, creating a system of ordinary differential equations (ODEs). The data of this study offers a first tool to be considered in the therapeutic management of the NBM patient undergoing immunotherapeutic treatment.