Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 6(85)

DOI: 10.1103/physreve.85.066107

Links

Tools

Export citation

Search in Google Scholar

Quantifying the complexity of random Boolean networks

Journal article published in 2012 by Xinwei Gong, Joshua E. S. Socolar ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We study two measures of the complexity of heterogeneous extended systems, taking random Boolean networks as prototypical cases. A measure defined by Shalizi et al. for cellular automata, based on a criterion for optimal statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)], does not distinguish between the spatial inhomogeneity of the ordered phase and the dynamical inhomogeneity of the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical regimes and for highly disordered networks, peaking somewhere in the disordered regime. Individual nodes with high complexity are the ones that pass the most information from the past to the future, a quantity that depends in a nontrivial way on both the Boolean function of a given node and its location within the network. ; Comment: 8 pages, 4 figures