Dissemin is shutting down on January 1st, 2025

Published in

Springer, Journal of High Energy Physics, 2(2019), 2019

DOI: 10.1007/jhep02(2019)136

Links

Tools

Export citation

Search in Google Scholar

Wormholes and masses for Goldstone bosons

Journal article published in 2019 by Rodrigo Alonso, Alfredo Urbano ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract There exist non-trivial stationary points of the Euclidean action for an axion particle minimally coupled to Einstein gravity, dubbed wormholes. They explicitly break the continuos global shift symmetry of the axion in a non-perturbative way, and generate an effective potential that may compete with QCD depending on the value of the axion decay constant. In this paper, we explore both theoretical and phenomenological aspects of this issue. On the theory side, we address the problem of stability of the wormhole solutions, and we show that the spectrum of the quadratic action features only positive eigenvalues. On the phenomenological side, we discuss, beside the obvious application to the QCD axion, relevant consequences for models with ultralight dark matter and black hole superradiance. We conclude discussing wormhole solutions for a generic coset and the potential they generate.