Published in

MDPI, Materials, 4(13), p. 864, 2020

DOI: 10.3390/ma13040864

Links

Tools

Export citation

Search in Google Scholar

Quantum Memristors in Frequency-Entangled Optical Fields

Journal article published in 2020 by Tasio Gonzalez-Raya ORCID, Joseph M. Lukens ORCID, Lucas C. Céleri, Mikel Sanz ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A quantum memristor is a passive resistive circuit element with memory, engineered in a given quantum platform. It can be represented by a quantum system coupled to a dissipative environment, in which a system–bath coupling is mediated through a weak measurement scheme and classical feedback on the system. In quantum photonics, such a device can be designed from a beam splitter with tunable reflectivity, which is modified depending on the results of measurements in one of the outgoing beams. Here, we show that a similar implementation can be achieved with frequency-entangled optical fields and a frequency mixer that, working similarly to a beam splitter, produces state superpositions. We show that the characteristic hysteretic behavior of memristors can be reproduced when analyzing the response of the system with respect to the control, for different experimentally attainable states. Since memory effects in memristors can be exploited for classical and neuromorphic computation, the results presented in this work could be a building block for constructing quantum neural networks in quantum photonics, when scaling up.