Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nonlinearity, 5(25), p. 1427-1441

DOI: 10.1088/0951-7715/25/5/1427

Links

Tools

Export citation

Search in Google Scholar

Noise and Topology in Driven Systems - an Application to Interface Dynamics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Motivated by a stochastic differential equation describing the dynamics of interfaces, we study the bifurcation behavior of a more general class of such equations. These equations are characterized by a 2-dimensional phase space (describing the position of the interface and an internal degree of freedom). The noise accounts for thermal fluctuations of such systems. The models considered show a saddle-node bifurcation and have furthermore homoclinic orbits, i.e., orbits leaving an unstable fixed point and returning to it. Such systems display intermittent behavior. The presence of noise combined with the topology of the phase space leads to unexpected behavior as a function of the bifurcation parameter, i.e., of the driving force of the system. We explain this behavior using saddle point methods and considering global topological aspects of the problem. This then explains the non-monotonous force-velocity dependence of certain driven interfaces.