Published in

MDPI, Electronics, 9(8), p. 1060, 2019

DOI: 10.3390/electronics8091060

Links

Tools

Export citation

Search in Google Scholar

An Approval of MPPT Based on PV Cell’s Simplified Equivalent Circuit During Fast-Shading Conditions

Journal article published in 2019 by Rajput, Averbukh, Yahalom, Minav ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The partial shading conditions significantly affect the functionality of solar power plants despite the presence of multiple maximum power point tracking systems. The primary cause of this problem is the presence of local maxima in the power–current and/or power–voltage characteristic curves that restrict the functionality of the conventional maximum power point tracking systems. The present article proposes a modified algorithm based on the simplified equivalent circuit of solar cells to improve the functionality of traditional maximum power point tracking systems. This algorithm provides a method for regularly monitoring the photo-current of each solar module. The upper and lower boundaries of the regulating parameter such as current or voltage are decided very precisely, which is helpful to find the location of the global maximum. During a sequential search, the control system accurately determines the lower and upper boundaries of the global maximum. Simultaneously, the maximum power point tracking system increases the photovoltaic current up to one of these boundaries and applies one of the conventional algorithms. Additionally, the control system regularly monitors the photovoltaic characteristics and changes the limits of regulating parameter concerning any change in global maximum location. This proposed method is fast and precise to locate the global maximum boundaries and to track global maximum even under fast-changing partial shading conditions. The improved performance and overall efficiency are validated by simulation study for variable solar irradiance.