Published in

MDPI, Remote Sensing, 21(11), p. 2573, 2019

DOI: 10.3390/rs11212573

Links

Tools

Export citation

Search in Google Scholar

Sentinel-2 Validation for Spatial Variability Assessment in Overhead Trellis System Viticulture Versus UAV and Agronomic Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Several remote sensing technologies have been tested in precision viticulture to characterize vineyard spatial variability, from traditional aircraft and satellite platforms to recent unmanned aerial vehicles (UAVs). Imagery processing is still a challenge due to the traditional row-based architecture, where the inter-row soil provides a high to full presence of mixed pixels. In this case, UAV images combined with filtering techniques represent the solution to analyze pure canopy pixels and were used to benchmark the effectiveness of Sentinel-2 (S2) performance in overhead training systems. At harvest time, UAV filtered and unfiltered images and ground sampling data were used to validate the correlation between the S2 normalized difference vegetation indices (NDVIs) with vegetative and productive parameters in two vineyards (V1 and V2). Regarding the UAV vs. S2 NDVI comparison, in both vineyards, satellite data showed a high correlation both with UAV unfiltered and filtered images (V1 R2 = 0.80 and V2 R2 = 0.60 mean values). Ground data and remote sensing platform NDVIs correlation were strong for yield and biomass in both vineyards (R2 from 0.60 to 0.95). These results demonstrate the effectiveness of spatial resolution provided by S2 on overhead trellis system viticulture, promoting precision viticulture also within areas that are currently managed without the support of innovative technologies.