Published in

De Gruyter Open, Nanophotonics, 1(9), p. 19-37, 2019

DOI: 10.1515/nanoph-2019-0401

Links

Tools

Export citation

Search in Google Scholar

Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy

Journal article published in 2019 by Timea Frosch ORCID, Andreas Knebl, Torsten Frosch
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractInnovations in Raman spectroscopic techniques provide a potential solution to current problems in pharmaceutical drug monitoring. This review aims to summarize the recent advances in the field. The developments of novel plasmonic nanoparticles continuously push the limits of Raman spectroscopic detection. In surface-enhanced Raman spectroscopy (SERS), these particles are used for the strong local enhancement of Raman signals from pharmaceutical drugs. SERS is increasingly applied for forensic trace detection and for therapeutic drug monitoring. In combination with spatially offset Raman spectroscopy, further application fields could be addressed, e.g.in situpharmaceutical quality testing through the packaging. Raman optical activity, which enables the thorough analysis of specific chiral properties of drugs, can also be combined with SERS for signal enhancement. Besides SERS, micro- and nano-structured optical hollow fibers enable a versatile approach for Raman signal enhancement of pharmaceuticals. Within the fiber, the volume of interaction between drug molecules and laser light is increased compared with conventional methods. Advances in fiber-enhanced Raman spectroscopy point at the high potential for continuous online drug monitoring in clinical therapeutic diagnosis. Furthermore, fiber-array based non-invasive Raman spectroscopic chemical imaging of tablets might find application in the detection of substandard and counterfeit drugs. The discussed techniques are promising and might soon find widespread application for the detection and monitoring of drugs in various fields.