Published in

American Association for the Advancement of Science, Science, 6447(364), p. 1264-1267, 2019

DOI: 10.1126/science.aat5718

Links

Tools

Export citation

Search in Google Scholar

Giant vortex clusters in a two-dimensional quantum fluid

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Clustering vortices Many-body systems generally become more disordered as more energy is pumped into them. A curious exception to this rule was predicted in the context of turbulent flow by the physical chemist Lars Onsager. He suggested that the entropy of certain two-dimensional (2D) systems can decrease with increasing energy, corresponding to an effective negative temperature. Using 2D Bose-Einstein condensates of atoms, Gauthier et al. and Johnstone et al. put Onsager's theory to the test. They provided energy to the system by perturbing the condensate, creating vortices and antivortices. With increasing energy, the system became more ordered as clusters containing either only vortices or only antivortices emerged. Science , this issue p. 1264 , p. 1267