Published in

MDPI, Applied Sciences, 4(10), p. 1247, 2020

DOI: 10.3390/app10041247

Links

Tools

Export citation

Search in Google Scholar

Zebrafish Larvae Phenotype Classification from Bright-field Microscopic Images Using a Two-Tier Deep-Learning Pipeline

Journal article published in 2020 by Shang Shang, Sijie Lin ORCID, Fengyu Cong ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Classification of different zebrafish larvae phenotypes is useful for studying the environmental influence on embryo development. However, the scarcity of well-annotated training images and fuzzy inter-phenotype differences hamper the application of machine-learning methods in phenotype classification. This study develops a deep-learning approach to address these challenging problems. A convolutional network model with compressed separable convolution kernels is adopted to address the overfitting issue caused by insufficient training data. A two-tier classification pipeline is designed to improve the classification accuracy based on fuzzy phenotype features. Our method achieved an averaged accuracy of 91% for all the phenotypes and maximum accuracy of 100% for some phenotypes (e.g., dead and chorion). We also compared our method with the state-of-the-art methods based on the same dataset. Our method obtained dramatic accuracy improvement up to 22% against the existing method. This study offers an effective deep-learning solution for classifying difficult zebrafish larvae phenotypes based on very limited training data.