Dissemin is shutting down on January 1st, 2025

Published in

Materiale Plastice, 2(54), p. 341-344, 2017

DOI: 10.37358/mp.17.2.4847

Links

Tools

Export citation

Search in Google Scholar

Functionalization of Porous Clay Heterostructures with Silane Coupling Agents

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The goal of this paper was to study the modification of porous clay heterostructures (PCHs) with various silane coupling agents. Two commercial coupling agents (3-aminopropyl-triethoxysilane (APTES) and 3-glycidoxypropyl-trimethoxysilane (GPTMS)) with different functional groups (amine and epoxy groups) were used as modifying agents for the PCHs functionalization. The functionalization of PCH with APTES and GPTMS was evaluated by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), X-Ray Diffractions (XRD) and BET Analysis. FTIR spectra of modified PCHs confirmed the presence of characteristic peaks of silane coupling agents. TGA results highlighted an increase of weight loss for the modified PCHs that was assigned to the degradation of silane coupling agents (APTES and GPTMS) attached to the PCHs. The XRD results showed that the structure of modified PCHs was influenced by the type of the silane coupling agent. The functionalization of PCHs with silane coupling agents was also confirmed by BET analysis. Textural parameters (specific surface area (SBET), total pore volume (Vt )) suggested that the modified PCHs exhibit lower values of SBET and a significant decrease of total pore volume than unmodified PCHs.