Dissemin is shutting down on January 1st, 2025

Published in

American Society of Hematology, Blood Advances, 3(3), p. 320-332, 2019

DOI: 10.1182/bloodadvances.2018024422

Links

Tools

Export citation

Search in Google Scholar

RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract To unravel molecular mechanisms by which Runt-related transcription factor 1 (RUNX1) mutations contribute to leukemic transformation, we introduced the RUNX1-S291fs300X mutation in human CD34+ stem/progenitor cells and in human induced pluripotent stem cells (iPSCs). In both models, RUNX1mut overexpression strongly impaired myeloid commitment. Instead, self-renewal was enhanced, as shown, by increased long-term culture-initiating cell frequencies and enhanced colony-forming cell replating capacity. Long-term suspension cultures with RUNX1mut-transduced cord blood (CB) CD34+ cells continued for more than 100 days, during which the cells displayed an immature granulocyte-macrophage progenitor-like CD34+/CD123+/CD45RA+ phenotype. The CD34+/CD38− hematopoietic stem cell (HSC) population most likely acted as cell of origin, as HSCs provided the best long-term proliferative potential on overexpression of RUNX1mut. CEBPA expression was reduced in RUNX1mut cells, and reexpression of CEBPA partly restored differentiation. RNA-seq analysis on CB/iPSC systems and on primary patient samples confirmed that RUNX1 mutations induce a myeloid differentiation block, and that a common set of RUNX1mut-upregulated target genes was strongly enriched for gene ontology terms associated with nucleosome assembly and chromatin structure. Interestingly, in comparison with AML1-ETO binding in acute myeloid leukemias (AMLs), we found significantly distinct genomic distribution and differential expression for RUNX1mut of genes such as TCF4, MEIS1, and HMGA2 that may potentially contribute to the underlying difference in clinical outcomes between RUNX1mut and AML1-ETO patients. In conclusion, RUNX1mut appears to induce a specific transcriptional program that contributes to leukemic transformation.