Published in

BioMed Central, Parasites and Vectors, 1(13), 2020

DOI: 10.1186/s13071-020-3936-3

Links

Tools

Export citation

Search in Google Scholar

Wolbachia strain wAlbB blocks replication of flaviviruses and alphaviruses in mosquito cell culture

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Wolbachia pipientis are bacterial endosymbionts of arthropods currently being implemented as biocontrol agents to reduce the global burden of arboviral diseases. Some strains of Wolbachia, when introduced into Aedes aegypti mosquitoes, reduce or block the replication of RNA viruses pathogenic to humans. The wAlbB strain of Wolbachia was originally isolated from Aedes albopictus, and when transinfected into Ae. aegypti, persists in mosquitoes under high temperature conditions longer than other strains. The utility of wAlbB to block a broad spectrum of RNA viruses has received limited attention. Here we test the ability of wAlbB to reduce or block the replication of a range of Flavivirus and Alphavirus species in cell culture. Methods The C6/36 mosquito cell line was stably infected with the wAlbB strain using the shell-vial technique. The replication of dengue, West Nile and three strains of Zika (genus Flavivirus), and Ross River, Barmah Forest and Sindbis (genus Alphavirus) viruses was compared in wAlbB-infected cells with Wolbachia-free controls. Infectious virus titres were determined using either immunofocus or plaque assays. A general linear model was used to test for significant differences in replication between flaviviruses and alphaviruses. Results Titres of all viruses were significantly reduced in cell cultures infected with wAlbB versus Wolbachia-free controls. The magnitude of reduction in virus yields varied among virus species and, within species, also among the strains utilized. Conclusion Our results suggest that wAlbB infection of arthropods could be used to reduce transmission of a wide range of pathogenic RNA viruses.