Published in

Oxford University Press, Cerebral Cortex, 6(30), p. 3439-3450, 2020

DOI: 10.1093/cercor/bhz319

Links

Tools

Export citation

Search in Google Scholar

Minimal Relationship between Local Gyrification and General Cognitive Ability in Humans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Previous studies suggest that gyrification is associated with superior cognitive abilities in humans, but the strength of this relationship remains unclear. Here, in two samples of related individuals (total N = 2882), we calculated an index of local gyrification (LGI) at thousands of cortical surface points using structural brain images and an index of general cognitive ability (g) using performance on cognitive tests. Replicating previous studies, we found that phenotypic and genetic LGI–g correlations were positive and statistically significant in many cortical regions. However, all LGI–g correlations in both samples were extremely weak, regardless of whether they were significant or nonsignificant. For example, the median phenotypic LGI–g correlation was 0.05 in one sample and 0.10 in the other. These correlations were even weaker after adjusting for confounding neuroanatomical variables (intracranial volume and local cortical surface area). Furthermore, when all LGIs were considered together, at least 89% of the phenotypic variance of g remained unaccounted for. We conclude that the association between LGI and g is too weak to have profound implications for our understanding of the neurobiology of intelligence. This study highlights potential issues when focusing heavily on statistical significance rather than effect sizes in large-scale observational neuroimaging studies.