Published in

Associação Brasileira de Olericultura, Horticultura Brasileira, 1(37), p. 82-88, 2019

DOI: 10.1590/s0102-053620190113

Links

Tools

Export citation

Search in Google Scholar

Growth of sweet pepper plants submitted to water tensions in soil and potassium silicate doses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Water stress compromises plant growth. Resistance inducers, such as potassium silicate (K2SiO3), can reduce negative effects of this stress on Solanaceae, Capsicum annuum. Plant height, stem diameter and leaf area may indicate the efficiency of potassium silicate foliarsprayagainst water stress. The aim of this study was to evaluate the growth of sweet pepper plants under water stress and K2SiO3 doses. The experiment was conducted in randomized blocks in a split-plot scheme in space. The treatments consisted of four soil water stresses: 15 kPa (field capacity), 25 (intermediate value), 35 and 45 kPa (water stress) and three doses of potassium silicate (0, 0.4 and 0.8 L 100 L-1 water), acting as resistance inducers to water stress. The resistance inducer maintained greater heights of the sweet pepper plants, under water stress (35 and 45 kPa) at the initial stage [(20 days after transplanting (DAT)]. Smaller plant diameters were observed at 80 and 100 DAT at 35 and 45 kPa. Sprays using K2SiO3 maintained sweet pepper leaf area with higher values, even under stress condition. The soil water tension from 35 kPa limited, in general, the plant growth. Growth responses in Capsicum annuum to K2SiO3, via foliar spraying, varied according to plant age, as well as the growth parameter considered in this experiment.