Published in

Universidade Federal de Santa Maria, Ciência Rural, 5(49), 2019

DOI: 10.1590/0103-8478cr20180695

Links

Tools

Export citation

Search in Google Scholar

Mineral composition, histomorphometry, and bone biomechanical properties are improved with probiotic, prebiotic, and symbiotic supplementation in rats chronically exposed to passive smoking: a randomized pre-clinical study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Cigarette smoke in large centers is one of the most important causes of chronic inflammatory diseases in public health and is associated with a decrease in bone mass, consolidation process, and bone remodeling. Due to their ability to improve intestinal absorption and compete with pathogenic microorganisms, dietary supplementation with functional foods may contribute to improvement in bone quality. Therefore, the objective of this study was to evaluate the effects of functional, probiotic, prebiotic, or symbiotic food supplementation on mineral composition, histomorphometry, and bone biomechanical properties of rats in the growth phase, chronically exposed to cigarette smoke (T).Sixty-four young male rats were randomly assigned to eight groups (n=8): control (C) [standard diet (SD)]; probiotic (Pro) [SD + probiotic (Lactobacillus acidophilus, Enterococcus faecium, Bifidobacterium thermophilum and Bifidobacterium longum) (2-5 109 UFC each)]; prebiotic (Pre) [SD+ prebiotic (mannan oligosaccharide)]; symbiotic (Sym) (SD + probiotic + prebiotic); control smoking (SC) [(SD + exposure protocol to passive smoking (PS)]; probiotic smoking (ProS) (SD + probiotic + PS); prebiotic smoking (PreS) (SD + prebiotic + PS), and symbiotic smoking (SymS)(SD + prebiotic + probiotic + PS). The animals were euthanized after 189 days of the experimental protocol. Results showed that supplementation with probiotics, prebiotics, and symbiotics significantly improved (P<0.05) the parameters: P, Ca, Mg, BMD, BMC, strength, resilience, and size of area of the femoral diaphysis of the animals chronically exposed or not cigarette smoke. We concluded that functional food supplementation improved the bone health of rats chronically exposed or not to cigarette smoke.