Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 3(20), p. 858, 2020

DOI: 10.3390/s20030858

Links

Tools

Export citation

Search in Google Scholar

Connected Elbow Exoskeleton System for Rehabilitation Training Based on Virtual Reality and Context-Aware

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Traditional physiotherapy rehabilitation systems are evolving into more advanced systems based on exoskeleton systems and Virtual Reality (VR) environments that enhance and improve rehabilitation techniques and physical exercise. In addition, due to current connected systems and paradigms such as the Internet of Things (IoT) or Ambient Intelligent (AmI) systems, it is possible to design and develop advanced, effective, and low-cost medical tools that patients may have in their homes. This article presents a low-cost exoskeleton for the elbow that is connected to a Context-Aware architecture and thanks to a VR system the patient can perform rehabilitation exercises in an interactive way. The integration of virtual reality technology in rehabilitation exercises provides an intensive, repetitive and task-oriented capacity to improve patient motivation and reduce work on medical professionals. One of the system highlights is the intelligent ability to generate new exercises, monitor the exercises performed by users in search of progress or possible problems and the dynamic modification of the exercises characteristics. The platform also allows the incorporation of commercial medical sensors capable of collecting valuable information for greater accuracy in the diagnosis and evolution of patients. A case study with real patients with promising results has been carried out.