Published in

MDPI, Molbank, 1(2020), p. M1114, 2020

DOI: 10.3390/m1114

Links

Tools

Export citation

Search in Google Scholar

(E)-(1-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxystyryl)-2-pyrazoline: Synthesis, Characterization, DNA-Interaction, and Evaluation of Activity Against Drug-Resistant Cell Lines

Journal article published in 2020 by Matiadis ORCID, Mavroidi, Panagiotopoulou, Methenitis, Pelecanou, Sagnou
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(E)-1-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimethoxystyryl)-2-pyrazoline was synthesized via the cyclization reaction between the monocarbonyl curcuminoid (2E,6E)-2,6-bis(3,4-dimethoxybenzylidene)acetone and ethyl hydrazinobenzoate in high yield and purity (>95% by High-performance liquid chromatography (HPLC)). The compound has been fully characterized by 1H, 13C NMR, FTIR, UV-Vis and HRMS and its activity was evaluated in terms of its potential interaction with DNA as well as its cytotoxicity against resistant and non-resistant tumor cells. Both DNA thermal denaturation and DNA viscosity measurements revealed that a significant intercalation binding takes place upon treatment of the DNA with the synthesized pyrazoline, causing an increase in melting temperature by 3.53 ± 0.11 °C and considerable DNA lengthening and viscosity increase. However, neither re-sensitisation of Doxorubicin (DO X)-resistant breast cancer and multidrug resistance (MDR) reversal nor synergistic activity with DOX by potentially increasing the DOX cell killing ability was observed.