Published in

American Association for the Advancement of Science, Science, 6432(363), p. 1199-1202, 2019

DOI: 10.1126/science.aat3803

Links

Tools

Export citation

Search in Google Scholar

Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Superefficient light emission A challenge to improving synthesis methods for superefficient light-emitting semiconductor nanoparticles is that current analytical methods cannot measure efficiencies above 99%. Hanifi et al. used photothermal deflection spectroscopy to measure very small nonradiative decay components in quantum dot photoluminescence. The method allowed them to tune the synthesis of CdSe/CdS quantum dots so that the external luminescent efficiencies exceeded 99.5%. This is important for applications that require an absolute minimum amount of photon energy to be lost as heat, such as photovoltaic luminescent concentrators. Science , this issue p. 1199