Published in

American Association for the Advancement of Science, Science, 6461(366), p. 100-104, 2019

DOI: 10.1126/science.aay0967

Links

Tools

Export citation

Search in Google Scholar

Active site rearrangement and structural divergence in prokaryotic respiratory oxidases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hemes switch spots in a terminal oxidase Reduction of molecular oxygen to water is the driving force for respiration in aerobic organisms and is catalyzed by several distinct integral membrane complexes. These include an exclusively prokaryotic enzyme, cytochrome bd–type quinol oxidase, which is a potential antimicrobial target. Safarian et al. determined a high-resolution cryo–electron microscopy structure of this enzyme from the enteric bacterium Escherichia coli . Comparison to a homolog reveals a complete relocation of the site of oxygen binding and reduction caused by a change in the arrangement of heme cofactors and channels in the protein scaffold. This switch illustrates the diversity of structure and function in this family of enzymes and might reflect different biochemical roles of these homologs. Science , this issue p. 100