Published in

American Association for the Advancement of Science, Science, 6444(364), p. 984-987, 2019

DOI: 10.1126/science.aax0916

Links

Tools

Export citation

Search in Google Scholar

Stable Casimir equilibria and quantum trapping

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Something repulsive in the Casimir effect Two uncharged objects (metal plates for instance) will experience an attractive force between them, the magnitude of which increases as they are brought closer together. This force, or Casimir effect, is caused by vacuum fluctuations of the electromagnetic field. Effectively, more modes outside than between the objects results in the objects being pushed together. Zhao et al. show that the extent of the electromagnetic fluctuations can be controlled by coating one of the objects with a dielectric (Teflon), which changes the Casimir effect to a repulsive force at small distances. This then cancels out the force between plates and produces a point of stable equilibrium. Science , this issue p. 984