Published in

American Association for the Advancement of Science, Science, 6448(365), p. 61-65, 2019

DOI: 10.1126/science.aaw8634

Links

Tools

Export citation

Search in Google Scholar

Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Refilling the proton pump Proteins are dynamic. Rearrangements of side chains, secondary structure, and entire domains gate functional transitions on time scales ranging from picoseconds to milliseconds. Weinert et al. used time-resolved serial crystallography to study large conformational changes in the proton pump bacteriorhodopsin that allow for redistribution of protons during the pumping cycle. They adapted methods used for x-ray free electron lasers to synchrotron x-ray sources. Large loop movements and a chain of water molecules were central to regenerating the starting state of bacteriorhodopsin. Science , this issue p. 61