Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 5(104), p. 051913

DOI: 10.1063/1.4864400

Links

Tools

Export citation

Search in Google Scholar

Hardness and incipient plasticity in silicate glasses: Origin of the mixed modifier effect

Journal article published in 2014 by Jonas Kjeldsen, Morten Mattrup Smedskjær ORCID, John C. Mauro, Yuanzheng Yue
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The scaling of Vickers hardness (Hv) in oxide glasses with varying network modifier/modifier ratio is manifested as either a positive or negative deviation from linearity with a maximum deviation at the ratio of about 1:1. In an earlier study [J. Kjeldsen et al., J. Non-Cryst. Solids 369, 61 (2013)], we observed a minimum of Hv in CaO/MgO sodium aluminosilicate glasses at CaO/MgO = 1:1 and postulated that this minimum is linked to a maximum in plastic flow. However, the origin of this link has not been experimentally verified. In this work, we attempt to do so by exploring the links among Hv, volume recovery ratio (VR) and plastic deformation volume (VP) under indentation, glass transition temperature (Tg), Young's modulus (E), and liquid fragility index (m) in CaO/MgO and CaO/Li2O sodium aluminosilicate glasses. We confirm the negative deviations from linearity and find that the maximum deviation (i.e., the so-called mixed modifier effect) of Hv, Tg, and m is at the modifier ratio of 1:1. These deviations increase in intensity as the total modifier concentration increases. We find a strong correlation between VP and Hv for the CaO/MgO series, implying that the minimum in Hv originates primarily from an increased shear flow in the mixed modifier glasses.