Oxford University Press, International Journal of Epidemiology, 1(49), p. 216-232, 2019
DOI: 10.1093/ije/dyz193
Full text: Download
Abstract Background Previous gene-environment interaction studies of breast cancer risk have provided sparse evidence of interactions. Using the largest available dataset to date, we performed a comprehensive assessment of potential effect modification of 205 common susceptibility variants by 13 established breast cancer risk factors, including replication of previously reported interactions. Methods Analyses were performed using 28 176 cases and 32 209 controls genotyped with iCOGS array and 44 109 cases and 48 145 controls genotyped using OncoArray from the Breast Cancer Association Consortium (BCAC). Gene-environment interactions were assessed using unconditional logistic regression and likelihood ratio tests for breast cancer risk overall and by estrogen-receptor (ER) status. Bayesian false discovery probability was used to assess the noteworthiness of the meta-analysed array-specific interactions. Results Noteworthy evidence of interaction at ≤1% prior probability was observed for three single nucleotide polymorphism (SNP)-risk factor pairs. SNP rs4442975 was associated with a greater reduction of risk of ER-positive breast cancer [odds ratio (OR)int = 0.85 (0.78-0.93), Pint = 2.8 x 10–4] and overall breast cancer [ORint = 0.85 (0.78-0.92), Pint = 7.4 x 10–5) in current users of estrogen-progesterone therapy compared with non-users. This finding was supported by replication using OncoArray data of the previously reported interaction between rs13387042 (r2 = 0.93 with rs4442975) and current estrogen-progesterone therapy for overall disease (Pint = 0.004). The two other interactions suggested stronger associations between SNP rs6596100 and ER-negative breast cancer with increasing parity and younger age at first birth. Conclusions Overall, our study does not suggest strong effect modification of common breast cancer susceptibility variants by established risk factors.