Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Multiple Sclerosis Journal, 9(26), p. 1064-1073, 2019

DOI: 10.1177/1352458519849513

Links

Tools

Export citation

Search in Google Scholar

A proof-of-concept application of a novel scoring approach for personalized medicine in multiple sclerosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Stratified medicine methodologies based on subgroup analyses are often insufficiently powered. More powerful personalized medicine approaches are based on continuous scores. Objective: We deployed a patient-specific continuous score predicting treatment response in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: Data from two independent randomized controlled trials (RCTs) were used to build and validate an individual treatment response (ITR) score, regressing annualized relapse rates (ARRs) on a set of baseline predictors. Results: The ITR score for the combined treatment groups versus placebo detected differential clinical response in both RCTs. High responders in one RCT had a cross-validated ARR ratio of 0.29 (95% confidence interval (CI) = 0.13–0.55) versus 0.62 (95% CI = 0.47–0.83) for all other responders (heterogeneity p = 0.038) and were validated in the other RCT, with the corresponding ARR ratios of 0.31 (95% CI = 0.18–0.56) and 0.61 (95% CI = 0.47–0.79; heterogeneity p = 0.036). The strongest treatment effect modifiers were the Short Form-36 Physical Component Summary, age, Visual Function Test 2.5%, prior MS treatment and Expanded Disability Status Scale. Conclusion: Our modelling strategy detects and validates an ITR score and opens up avenues for building treatment response calculators that are also applicable in routine clinical practice.