Published in

Springer, Current Osteoporosis Reports, 6(17), p. 363-374, 2019

DOI: 10.1007/s11914-019-00535-9

Links

Tools

Export citation

Search in Google Scholar

Biomechanics of Osteoporotic Fracture Fixation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose of Review Fractures of osteoporotic bone in elderly individuals need special attention. This manuscript reviews the current strategies to provide sufficient fracture fixation stability with a particular focus on fractures that frequently occur in elderly individuals with osteoporosis and require full load-bearing capacity, i.e., pelvis, hip, ankle, and peri-implant fractures. Recent Findings Elderly individuals benefit immensely from immediate mobilization after fracture and thus require stable fracture fixation that allows immediate post-operative weight-bearing. However, osteoporotic bone has decreased holding capacity for metallic implants and is thus associated with a considerable fracture fixation failure rate both short term and long term. Modern implant technologies with dedicated modifications provide sufficient mechanical stability to allow immediate weight-bearing for elderly individuals. Depending on fracture location and fracture severity, various options are available to reinforce or augment standard fracture fixation systems. Summary Correct application of the basic principles of fracture fixation and the use of modern implant technologies enables mechanically stable fracture fixation that allows early weight-bearing and results in timely fracture healing even in patients with osteoporosis.