Published in

Apollo - University of Cambridge Repository, 2020

DOI: 10.17863/cam.47548

American Association for the Advancement of Science, Science Advances, 11(5), 2019

DOI: 10.1126/sciadv.aax7398

Links

Tools

Export citation

Search in Google Scholar

Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Although monolayer transition metal dichalcogenides (TMDs) have direct bandgaps, the low room-temperature photoluminescence quantum yields (QYs), especially under high pump intensity, limit their practical applications. Here, we use a simple photoactivation method to enhance the room-temperature QYs of monolayer MoS2 grown on to silica micro/nanofibers by more than two orders of magnitude in a wide pump dynamic range. The high-density oxygen dangling bonds released from the tapered micro/nanofiber surface are the key to this strong enhancement of QYs. As the pump intensity increases from 10-1 to 104 W cm-2, our photoactivated monolayer MoS2 exhibits QYs from ~30 to 1% while maintaining high environmental stability, allowing direct lasing with greatly reduced thresholds down to 5 W cm-2. Our strategy can be extended to other TMDs and offers a solution to the most challenging problem toward the realization of efficient and stable light emitters at room temperature based on these atomically thin materials.