Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-15159-2

Links

Tools

Export citation

Search in Google Scholar

A highly CMOS compatible hafnia-based ferroelectric diode

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMemory devices with high speed and high density are highly desired to address the ‘memory wall’ issue. Here we demonstrated a highly scalable, three-dimensional stackable ferroelectric diode, with its rectifying polarity modulated by the polarization reversal of Hf0.5Zr0.5O2 films. By visualizing the hafnium/zirconium lattice order and oxygen lattice order with atomic-resolution spherical aberration-corrected STEM, we revealed the correlation between the spontaneous polarization of Hf0.5Zr0.5O2 film and the displacement of oxygen atom, thus unambiguously identified the non-centrosymmetric Pca21 orthorhombic phase in Hf0.5Zr0.5O2 film. We further implemented this ferroelectric diode in an 8 layers 3D array. Operation speed as high as 20 ns and robust endurance of more than 109 were demonstrated. The built-in nonlinearity of more than 100 guarantees its self-selective property that eliminates the need for external selectors to suppress the leakage current in large array. This work opens up new opportunities for future memory hierarchy evolution.