Published in

American Association for Cancer Research, Clinical Cancer Research, 11(26), p. 2673-2680, 2020

DOI: 10.1158/1078-0432.ccr-19-2135

Links

Tools

Export citation

Search in Google Scholar

Detection of Molecular Signatures of Homologous Recombination Deficiency in Prostate Cancer with or without BRCA1/2 Mutations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Prostate cancers with mutations in genes involved in homologous recombination (HR), most commonly BRCA2, respond favorably to PARP inhibition and platinum-based chemotherapy. We investigated whether other prostate tumors that do not harbor deleterious mutations in these particular genes can similarly be deficient in HR, likely rendering those sensitive to HR-directed therapies. Experimental Design: Homologous recombination deficiency (HRD) levels can be estimated using various mutational signatures derived from next-generation sequencing data. We used this approach on whole-genome sequencing (WGS; n = 311) and whole-exome sequencing (WES) data (n = 498) of both primary and metastatic prostate adenocarcinomas to determine whether prostate cancer cases display clear signs of HRD in somatic tumor biopsies. Results: Known BRCA-deficient samples showed all previously described HRD-associated mutational signatures in the WGS data. HRD-associated mutational signatures were also detected in a subset of patients who did not harbor germline or somatic mutations in BRCA1/2 or other HR-related genes. Similar results, albeit with lower sensitivity and accuracy, were also obtained from WES data. Conclusions: These findings may expand the number of cases likely to respond to PARP inhibitor treatment. On the basis of the HR-associated mutational signatures, 5% to 8% of localized prostate cancer cases may be good candidates for PARP-inhibitor treatment (including those with BRCA1/2 mutations).