Published in

BioScientifica, European Journal of Endocrinology, 6(181), p. 691-700, 2019

DOI: 10.1530/eje-19-0658

Links

Tools

Export citation

Search in Google Scholar

Increased leptin, decreased adiponectin and FGF21 concentrations in adolescent offspring of women with gestational diabetes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective Fetal exposure to gestational diabetes mellitus (GDM) increases the risk of metabolic diseases in the offspring. Leptin, adiponectin, and fibroblast growth factor 21 (FGF21) may play potential roles in the underlying disease mechanisms. We investigated the impact of fetal exposure to GDM on leptin, adiponectin, and FGF21 concentrations and their associations with measures of adiposity and metabolic traits during childhood/adolescence. Design and methods The follow-up study included 504 GDM and 540 control offspring aged 9–16 from the Danish National Birth Cohort. Anthropometric measurements, fasting blood samples, puberty status and fat percentages by dual-energy X-ray absorptiometry were examined. Serum concentrations of leptin, adiponectin, and FGF21 were measured by validated immune assays. Results GDM offspring had 38% (95% CI: 22–55%) higher leptin, 0.6 mg/L (95% CI: −1.2, −0.04 mg/L) lower adiponectin, and 32% (95% CI: −47%, −12%) lower FGF21 concentrations than control offspring (P < 0.05). After adjustment for confounders including maternal pre-pregnancy BMI, GDM offspring had borderline higher leptin (P = 0.06) and significantly lower FGF21 concentrations (P = 0.006). When accounting for offspring BMI z-score, GDM exposure had no significant independent effect on leptin or adiponectin concentrations, whereas FGF21 was still significant. In univariate analyses, leptin and adiponectin were associated with fasting insulin, HOMA-IR, and adiposity, and FGF21 with total fat percentage. Conclusions GDM offspring had higher leptin, lower adiponectin and FGF21 concentrations than control offspring. Elevated leptin and decreased adiponectin concentrations associated with adverse metabolic traits and were most likely driven by higher obesity prevalence among GDM offspring. The functional implications of decreased FGF21 concentrations among GDM offspring need to be further explored.