Published in

Wiley, ELECTROPHORESIS, 13(26), p. 2643-2651, 2005

DOI: 10.1002/elps.200410364

Links

Tools

Export citation

Search in Google Scholar

Silica nanoparticles for separation of biologically active amines by capillary Electrophoresis with laser-induced native fluorescence detection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper describes the analysis of biologically active amines by capillary electrophoresis (CE) in conjunction with laser-induced native fluorescence detection. In order to simultaneously analyze amines and acids as well as to achieve high sensitivity, 10 mM formic acid solutions (pH < 4.0) containing silica nanoparticles (SiNPs) were chosen as the background electrolytes. With increasing SiNP concentration, the migration times for seven analytes decrease as a result of increase in electroosmotic flow (EOF) and decrease in their electrophoretic mobilities against EOF. A small EOF generated at pH 3.0 reveals adsorption of SiNPs on the deactivated capillary wall. The decreases in electrophoretic mobilities with increasing SiNP concentration up to 0.3x indicate the interactions between the analytes and the SiNPs. Having a great sensitivity (the limits of detection at a signal-to-noise ratio (S/N) = 3 of 0.09 nM for tryptamine (TA)), high efficiency, and excellent reproducibility (less than 2.4% of the migration times), this developed method has been applied to the analysis of urinal samples with the concentrations of 0.50 +/- 0.02 microM, 0.49 +/- 0.04 microM, and 74 +/- 2 microM for TA, 5-hydroxytryptamine, and tryptophan, respectively. The successful examples demonstrated in this study open up a possibility of using functional nanoparticles for the separation of different analytes by CE.