Published in

Springer, International Journal of Thermophysics, 2(41), 2020

DOI: 10.1007/s10765-019-2580-7

Links

Tools

Export citation

Search in Google Scholar

Downsizing and Silicon Integration of Photoacoustic Gas Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDownsizing and compatibility with MEMS silicon foundries is an attractive path towards a large diffusion of photoacoustic trace gas sensors. As the photoacoustic signal scales inversely with the chamber volume, a trend to miniaturization has been followed by several teams. We review in this article the approach initiated several years ago in our laboratory. Three generations of components, namely a 40 mm3 3D-printed cell, a 3.7 mm3 silicon cell, and a 2.3 mm3 silicon cell with a built-in piezoresistive pressure sensor, have been designed. The models used take into account the viscous and thermal losses, which cannot be neglected for such small-sized resonators. The components have been fabricated either by additive manufacturing or microfabrication and characterized. Based on a compilation of experimental data, a similar sub-ppm limit of detection is demonstrated. All three versions of photoacoustic cells have their own domain of operation as each one has benefits and drawbacks, regarding fabrication, implementation, and ease of use.