Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-018-36830-1

Links

Tools

Export citation

Search in Google Scholar

Controllable Tunneling Triboelectrification of Two-Dimensional Chemical Vapor Deposited MoS2

Journal article published in 2019 by He Wang ORCID, Chung-Che Huang, Tomas Polcar ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTunneling triboelectrification of chemical vapor deposited monolayer MoS2 has been characterized at nanoscale with contact-mode atomic force microscopy (AFM) and Kelvin force microscopy (KFM). Although charges can be trapped on insulators like SiO2 by conventional triboelectrification, triboelectric charges tunneling through MoS2 and localized at the underlying substrate exhibit more than two orders of magnitude longer lifetime. Their polarity and density can be modified by triboelectric process with various bias voltages applied to Pt-coated AFM tips, and the saturated density is almost 30 times higher than the reported result of SiO2. Thus, the controllable tunneling triboelectric properties of MoS2 on insulating substrates can provide guidance to build a new class of two-dimensional (2D) MoS2-based nanoelectronic devices.