Published in

Optica, Optics Express, 3(28), p. 3000, 2020

DOI: 10.1364/oe.380057

Links

Tools

Export citation

Search in Google Scholar

Reversible optical binding force in a plasmonic heterodimer under radially polarized beam illumination

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigated the optical binding force in a plasmonic heterodimer structure consisting of two nano-disks. It is found that when illuminated by a tightly focused radially polarized beam (RPB), the plasmon modes of the two nano-disks are strongly hybridized, forming bonding/antibonding modes. An interesting observation of this setup is that the direction of the optical binding force can be controlled by changing the wavelength of illumination, the location of the dimer, the diameter of the nano-disks, and the dimer gap size. Further analysis yields that the inhomogeneous polarization state of RPB can be utilized to readily control the bonding type of plasmon modes and distribute the underlying local field confined in the gap (the periphery) of the dimer, leading to a positive (negative) optical binding force. Our findings provide a clear strategy to engineer optical binding forces via changes in device geometry and its illumination profile. Thus, we envision a significant role for our device in emerging nanophotonics structures.