Dissemin is shutting down on January 1st, 2025

Published in

American Phytopathological Society, Phytobiomes Journal, 1(5), p. 80-87, 2021

DOI: 10.1094/pbiomes-09-19-0050-fi

Links

Tools

Export citation

Search in Google Scholar

Nitrogen Fertilization Reduces Nitrogen Fixation Activity of Diverse Diazotrophs in Switchgrass Roots

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of synthetic nitrogen fertilizers to grow biofuel crops adds to the economic and environmental costs of biomass production. Biological nitrogen fixation provides an alternative, eco-friendly source of nitrogen for leguminous plants and some nonlegumes. With the objective of characterizing and eventually harnessing nitrogen-fixing bacteria in switchgrass roots, we assayed nitrogenase activity and surveyed nifH-expressing bacteria in roots of switchgrass grown under agricultural conditions. Plants were cultivated at two separate locations in Oklahoma in different soil types for 5 years with three nitrogen fertilizer regimes (0, 90, and 180 kg of N ha−1 year−1). Nitrogenase activity associated with roots cleaned of soil was found to be highest in plants grown with no N fertilizer and lowest or not detectable for plants grown at the highest level of N fertilizer. A total of 454 abundant nifH operational taxonomic units (OTUs) were identified in the switchgrass roots. Diversity analysis of active nifH-expressing bacteria showed that the most common orders were Burkholderiales (171 OTUs), Desulfovibrionales (55 OTUs), and Rhizobiales (44 OTUs). OTUs belonging to Azonexus, Pseudacidovorax, Desulfovibrio, Dechloromonas, and Bradyrhizobium were enriched in roots of plants grown under low nitrogen conditions. Analysis of significant OTUs showed distinct nifH-expressing microbial communities at the two field locations, as well as a unique community in roots of unfertilized soil at Frederick that exhibited the highest rates of nitrogen fixation. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .