Published in

MDPI, Molecules, 2(25), p. 418, 2020

DOI: 10.3390/molecules25020418

Links

Tools

Export citation

Search in Google Scholar

Analgesic, Anti-Inflammatory, Cytotoxic Activity Screening and UPLC-PDA-ESI-MS Metabolites Determination of Bioactive Fractions of Kleinia pendula

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Kleinia pendula (Forssk.) DC. is a prostrate or pendent dark green succulent herb found in the southwestern mountain regions of Saudi Arabia. The literature survey of the plant reveals a lack of phytochemical and pharmacological studies, although traditional uses have been noted. The objective of the present work was to assess the in vivo analgesic and anti-inflammatory activities, as well as, the in vitro cytotoxic potential of the fractions of Kleinia pendula, and correlate these activities to the plant metabolites. The methanolic extract of Kleinia pendula was subjected to fractionation with n-hexane, ethyl acetate, chloroform, n-butanol, and water. The fractions were screened for their analgesic and anti-inflammatory activities, as well as cytotoxic activity against breast, liver, and colon cancer cell lines. The n-hexane and chloroform fractions of Kleinia pendula showed significant cytotoxic activity against all three cancer cell lines tested. The ethyl acetate and chloroform fractions showed significant analgesic and anti-inflammatory activities. The metabolites in these three active fractions were determined using UPLC-PDA-ESI-MS. Thus, the analgesic and anti-inflammatory activities of the plant were attributed to its phenolic acids (caffeoylquinic acid derivatives, protocatechuic, and chlorogenic acids). While fatty acids and triterpenoids such as (tormentic acid) in the hexane fraction are responsible for the cytotoxic activity; thus, these fractions of Kleinia pendula may be a novel source for the development of new plant-based analgesic, anti-inflammatory, and anticancer drugs.