Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, Journal of NeuroInterventional Surgery, 7(12), p. 720-724, 2019

DOI: 10.1136/neurintsurg-2019-015442

Links

Tools

Export citation

Search in Google Scholar

Region-specific agreement in ASPECTS estimation between neuroradiologists and e-ASPECTS software

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and purposeThe Alberta Stroke Program Early CT Score (ASPECTS) is a widely used measure of ischemic change on non-contrast CT. Although predictive of long-term outcome, ASPECTS is limited by its modest interobserver agreement. One potential solution to this is the use of machine learning strategies, such as e-ASPECTS, to detect ischemia. Here, we compared e-ASPECTS with manual scoring by experienced neuroradiologists for all 10 individual ASPECTS regions.Materials and methodsWe retrospectively reviewed 178 baseline non-contrast CT scans from patients with acute ischemic stroke undergoing endovascular thrombectomy. All scans were reviewed by two independent neuroradiologists with a third reader arbitrating disagreements for a consensus read. Each ASPECTS region was scored individually. All scans were then evaluated using a machine learning-based software package (e-ASPECTS, Brainomix). Interobserver agreement between readers and the software for each region was calculated with a kappa statistic.ResultsThe median ASPECTS was 9 for manual scoring and 8.5 for e-ASPECTS, with an overall agreement of κ=0.248. Regional agreement varied from κ=0.094 (M1) to κ=0.555 (lentiform), with better performance in subcortical regions. When corrected for the low number of infarcts in any given region, prevalence-adjusted bias-adjusted kappa ranged from 0.483 (insula) to 0.888 (M3), with greater agreement for cortical areas. Intraclass correlation coefficients were between 0.09 (M1) and 0.556 (lentiform).ConclusionManual scoring and e-ASPECTS had fair agreement in our dataset on a per-region basis. This warrants further investigation using follow-up scans or MRI as the gold standard measure of true ASPECTS.