Dissemin is shutting down on January 1st, 2025

Published in

American Diabetes Association, Diabetes, 2(69), p. 193-204, 2019

DOI: 10.2337/db19-0828

Links

Tools

Export citation

Search in Google Scholar

Tacrolimus-Induced BMP/SMAD Signaling Associates With Metabolic Stress–Activated FOXO1 to Trigger β-Cell Failure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Active maintenance of β-cell identity through fine-tuned regulation of key transcription factors ensures β-cell function. Tacrolimus, a widely used immunosuppressant, accelerates onset of diabetes after organ transplantation, but underlying molecular mechanisms are unclear. Here we show that tacrolimus induces loss of human β-cell maturity and β-cell failure through activation of the BMP/SMAD signaling pathway when administered under mild metabolic stress conditions. Tacrolimus-induced phosphorylated SMAD1/5 acts in synergy with metabolic stress–activated FOXO1 through formation of a complex. This interaction is associated with reduced expression of the key β-cell transcription factor MAFA and abolished insulin secretion, both in vitro in primary human islets and in vivo in human islets transplanted into high-fat diet–fed mice. Pharmacological inhibition of BMP signaling protects human β-cells from tacrolimus-induced β-cell dysfunction in vitro. Furthermore, we confirm that BMP/SMAD signaling is activated in protocol pancreas allograft biopsies from recipients on tacrolimus. To conclude, we propose a novel mechanism underlying the diabetogenicity of tacrolimus in primary human β-cells. This insight could lead to new treatment strategies for new-onset diabetes and may have implications for other forms of diabetes.