Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-018-36645-0

Links

Tools

Export citation

Search in Google Scholar

Circulating GATA2 mRNA is decreased among women destined to develop preeclampsia and may be of endothelial origin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPreeclampsia is a pregnancy complication associated with elevated placental secretion of anti-angiogenic factors, maternal endothelial dysfunction and organ injury. GATA2 is a transcription factor expressed in the endothelium which regulates vascular homeostasis by controlling transcription of genes and microRNAs, including endothelial miR126. We assessed GATA2 and miR126 in preeclampsia. Whole blood circulating GATA2 mRNA and miR126 expression were significantly decreased in women with established early-onset preeclampsia compared to gestation-matched controls (p = 0.002, p < 0.0001, respectively). Using case-control groups selected from a large prospective cohort, whole blood circulating GATA2 mRNA at both 28 and 36 weeks’ gestation was significantly reduced prior to the clinical diagnosis of preeclampsia (p = 0.012, p = 0.015 respectively). There were no differences in GATA2 mRNA or protein expression in preeclamptic placentas compared to controls, suggesting the placenta is an unlikely source. Inducing endothelial dysfunction in vitro by administering either tumour necrosis factor-α or placenta-conditioned media to endothelial cells, significantly reduced GATA2 mRNA expression (p < 0.0001), suggesting the reduced levels of circulating GATA2 mRNA may be of endothelial origin. Circulating GATA2 mRNA is decreased in women with established preeclampsia and decreased up to 12 weeks preceding onset of disease. Circulating mRNAs of endothelial origin may be a novel source of biomarker discovery for preeclampsia.