Dissemin is shutting down on January 1st, 2025

Published in

Electronic Journal of Combinatorics, Electronic Journal of Combinatorics, 3(19), 2012

DOI: 10.37236/2540

Links

Tools

Export citation

Search in Google Scholar

On a Recurrence Arising in Graph Compression

Journal article published in 2012 by Yongwook Choi ORCID, Charles Knessl, Wojciech Szpankowski
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In a recently proposed graphical compression algorithm by Choi and Szpankowski (2012), the following tree arose in the course of the analysis. The root contains $n$ balls that are consequently distributed between two subtrees according to a simple rule: In each step, all balls independently move down to the left subtree (say with probability $p$) or the right subtree (with probability $1-p$). A new node is created as long as there is at least one ball in that node. Furthermore, a nonnegative integer $d$ is given, and at level $d$ or greater one ball is removed from the leftmost node before the balls move down to the next level. These steps are repeated until all balls are removed (i.e., after $n+d$ steps). Observe that when $d=∞$ the above tree can be modeled as a trie that stores $n$ independent sequences generated by a binary memoryless source with parameter $p$. Therefore, we coin the name $(n,d)$-tries for the tree just described, and to which we often refer simply as $d$-tries. We study here in detail the path length, and show how much the path length of such a $d$-trie differs from that of regular tries. We use methods of analytic algorithmics, from Mellin transforms to analytic poissonization.